
��������� ��	�
�������
� ������������
 � ������������ !"
#�$�������%

& �(')

*,+�-/.,0/1�-32#+ 465/780�9�:3;�<

OOvveerrvviieeww

Problem Pooh sticks Buck Rogers Cars Swap

Program name pooh.exe buck.exe cars.exe swap.exe

Source name

pooh.pas

pooh.jav

pooh.cpp

buck.pas

buck.jav

buck.cpp

cars.pas

cars.jav

cars.cpp

swap.pas

swap.jav

swap.cpp

Input file pooh.in buck.in cars.in swap.in

Output files(10) pooh.out buck.out cars.out swap.out

Time limit 5 seconds 5 seconds 5 seconds 5 seconds

Num. of tests 10 10 10 10

Points per test 10 10 10 10

Total points 100 100 100 100

=?>,@BADCFEHGIAKJFA LNM6LNC�O/PFQ/M6RN@�STM6RVUHC/WXDGYP(Z#[[�\/M�G�]/LNP6^

_,`/a�b8cNdfeTgih�jlk,a�bTmYn/oqp�grn,mts8mtsvu
w n3kyx

zN{,|v}N~N�T|r�8{ �/�v��~K�6�r���

PPoooohh SSttiicckkss
AACCMM SSttuuddeenntt CChhaapptteerr CCoolllleeggee ooff

CChhaarrlleessttoonn

Winnie the Pooh enjoys spending lazy afternoons playing
Pooh Sticks with his friends. The game is very simple. Each
player finds a stick. Then, they all line up and look over the
side of a bridge. All at once, they drop their sticks into the
stream below and rush to the opposite side of the bridge.
The stick that appears first from under the bridge is the
winner.

To hype up this game a little more, Tigger suggested they
keep a running win average every afternoon so they could
see who's doing best. He then continued talking about Pooh
Stick Internationals and such, but that isn't important. The
first step is to calculate a win average for each player.

Owl and Rabbit developed a plan. The winner of each game
should receive four points. Second place should receive
three points. Third place should receive two points.
Everyone else gets one point. Then, when the day is over,
they divide everyone's score by the number of games
played. The highest win average should be the player with
the best sticks.

You are to read in a series of games. The first line contains a
single integer N (1 <= N <= 1000) indicating the number of
games played. Each game will be on a line by itself. There
are no blank lines between games. Each game will list seven
names in the order that the sticks appeared (there are no
ties). The names will be: Pooh, Piglet, Rabbit, Owl, Tigger,
Roo, and Eeyore.

You will then calculate the win average for each of the
seven players and output each name, form the highest win
average to the lowest, followed by that player's win average
(rounded to two decimal places). A single space character
should separate the player's name and win average. Players
with the same averages may be listed in any order.

Sample Input
Input: pooh.in

4
Pooh Piglet Rabbit Owl Tigger Roo Eeyore
Roo Owl Eeyore Tigger Piglet Pooh Rabbit
Pooh Piglet Eeyore Tigger Rabbit Owl Roo
Pooh Eeyore Piglet Rabbit Owl Roo Tigger

Sample Output
Output: pooh.out

Pooh 3.25
Piglet 2.25
Eeyore 2.0
Roo 1.75
Owl 1.5
Rabbit 1.25
Tigger 1.0

Constraints
The number of games played, 1 <= N <= 1000

Time
Maximum time per test case 5 seconds

Scoring
There will be 10 test cases, each of which will be weighted
equally.

_,`/a�b8cNdfeTgih�jlk,a�bTmYn/oqp�grn,mts8mtsvu
w n3kyx

zN{,|v}N~N�T|r�8{ �/�v��~K�6�r���

BBuucckkiinngg tthhee AAsstteerrooiiddss

GGrraahhaamm PPoouulltteerr
Help Buck Rogers navigate his way to a secret base hidden
in the midst of a dangerous asteroid field. Your ship will
start at X = 0, Y = 0 and must find a route through the
asteroids to reach its destination.

For the purposes of Buck Roger's mission, the ship has no
significant size, the universe is two-dimensional, and
asteroids stay still, have their centres on integer coordinates,
are perfectly circular, and have integer radii.

The entire "universe" lies within 0 <= X, Y <= 10,000.
Going outside the universe to get around the asteroids is
not allowed.

Buck's ship uses a unique jump-drive system which takes
him instantly to another point at any displacement from his
present position. The only problem is that there must not be
any obstacles between the current position and the
destination of the jump.

Your first jump will therefore be relative to the coordinates
(0,0), the second jump relative to your position after the first
one, and so on. In a correct solution, the displacements of
all the jumps added together will _equal_ the coordinates of
the destination, and the line segments they form will not
intersect an asteroid at any point. Your path does not have
to be optimal to be correct.

You may use floating point for calculations, but the jump
drive may only output integer displacements for each jump.

If the radius of an asteroid is R, then the distance from the
centre an asteroid to the destination or the edges of the
universe will never be less than 2R. For any two asteroids,
the distance between their centres will never be less than 2R
of the large asteroid plus R of the small one.

Your program will have a 5-second time limit, and 16Mb
memory limit.

Input Format (buck.in)
Line 1 Two integers, X and Y, 100 <= X, Y <= 10,000
representing the coordinates of your destination.

Line 2 One integer, 1 <= N <= 200, being the number of
asteroids in the simulation field.

Lines 3...N+2 Three integers each: X, Y and R. 10 <= X, Y
<= 9,990 are the integer coordinates of the asteroid, and 5
<= R <= 500 is the integer radius of the asteroid.

Output Format (buck.out)
Line 1 An integer E representing the number of times you
have used the jump drive. Any more than 1000 and the
evaluator will assume that you got lost.

Lines 2 to E+1 Two integers X and Y on each line,
representing the displacement the jump drive produces each
time. At least one of the numbers must be non-zero, else
you're going nowhere and your ship will nullify itself.

Sample Input
110 120
2
60 40 20
80 100 10

The destination is therefore at (110,120), and there are two
asteroids, one with radius 20 at (60,40), and another with
radius 10 at (80,100).

Sample Output
5
28 30
7 32
33 25
22 -1
20 34

The 5 is the number of jumps made. Each jump is then a
displacement vector (X,Y) from the previous position, the
first being relative to (0,0), your starting position. Add up
all the displacement vectors and they will equal the
destination vector of (110,120).

Time
Maximum time per test case 5 seconds

Scoring
There will be 10 test cases, each of which will be weighted
equally.

�,�/���8�N�f�T�i���l�,���T�Y�/�q���r�,�t�8�t�v�
� �3�y�

�N�,�v N¡N¢T�r£8� ¤/¥v¦�¡K§6¨r©�ª

CCaarrss TThhrroouugghhtt TThhee CCiittyy

HHeeiinnrriicchh DDuu TTooiitt

Description:
You are given a start point an end point a few locations and
roads between them. Calculate how many cars can drive
from the start to the end without any road used more than
once.

Input: cars.in
line 1: N The number of locations
line 2: R The number of roads
the next R lines: Each line describes a road with 2 integers:

The 2 locations it connects.

location 1 is the starting point.
location N is the ending point.
There can be more than 1 road between 2 locations.

e.g.
4
7
1 2
1 2
2 4
2 3
1 3
3 4
3 4

Output: cars.out
output contains 1 integer: The number of cars

Constraints:
Time limit: t.b.a (1.0 seconds on 1.3GHz Athlon)
(2 <= N <= 1000)
(1 <= R <= 100000)

Score:
A correct answer will score 100%
If your answer is illegal (To much) you will score 0%
If you didn't get all the paths you will score a partial mark as
long as your answer is more than half the optimal answer.

�,�/���8�N�f�T�i���l�,���T�Y�/�q���r�,�t�8�t�v�
� �3�y�

�N�,�v N¡N¢T�r£8� ¤/¥v¦�¡K§6¨r©�ª

SSwwaapp

HHaarrrryy WWiiggggiinnss

Description

Jack and Jill are best friends. They invented the game swap,
where one person chooses a word from the dictionary and
then jumble the letters around. The aim is to get from one
word to the other by choosing two letters and to swap them.

Task

To help Jack and Jill you must write a program that finds the
minimum number of swaps needed to accomplish this goal.

Input (swap.in)

The input will consist of 3 lines. The first line will be an
integer X where 5• X• 1000 and the following two lines
will be two words with X letters of the alphabet in
uppercase.

Sample input:

5
BANANA
ABANAN

Output (swap.out)

The output will start with a single line containing the
minimum number of swaps, followed by a list of the swaps
used. One per line, in the order they were used to achieve
the arrangement. A swap is described by using the index
associated with each letter in the word.
In this case :

Sample output:
3
1 2
3 4
5 6

Time Limit

Maximum time per test case is 5 seconds.

Scoring

There will be 10 test cases.
If your output is X and the answer is Y and
if 10 > X - Y > - 1, you get 10 + Y – X points.

1 2 3 4 5 6
B A N A N A
A B A N A N

